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It is known that the strength of a metal can be successfully improved by rapid solidification. The hardness
of the rapidly solidified Cu-Cr-Sn-Zn alloy is much higher than that of the solution heat-treated and aged
alloy. In this study, multiple-layer, feed-forward, artificial neural network (ANN) modeling has been used
to study the hardness and electrical conductivity behavior of a rapidly solidified Cu-Cr-Sn-Zn alloy. The
ANN model shows how the aging parameters influence the hardness and electrical conductivity of a rapidly
solidified Cu-Cr-Sn-Zn alloy. The ANN modeling also provides encouraging predictions for information
not included in the trained set samples, indicating that a backpropagation network is a very useful and
accurate tool for property analysis and prediction.
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1. Introduction

The lead frame in electronic packaging is one of the main
parts of the integrated circuit. The functions of the lead frame
are to provide channels for electronic signals between devices
and circuits, and for fixing devices on circuit boards. Lead
frame alloys are required to have high strength and high elec-
trical conductivity (Ref 1-4). The Cu-Cr-Sn-Zn alloy is one
such material, possessing high electrical conductivity, high
strength, press formability, and electroplating potential, as well
as attractive bonding and soldering characteristics. However,
the research to date on the Cu-Cr-Sn-Zn alloy has only focused
on solution heat treatment (SHT) and aging behavior (Ref 5, 6).
The strengthening effect from conventional SHT and aging is
limited due to the low solubility of Cr in Cu at the SHT tem-
perature as a result of the coarse grain structure. Rapid solidi-
fication processing (RSP; i.e., melt spinning) can, for example,
lead to an extension of the solute solid solubility of Cr in Cu
with a remarkable refinement of the grain size (Ref 7-9). Upon
aging, a very fine dispersion of second-phase particles is pre-
cipitated in the matrix. As such, dispersion hardening greatly
improves strength without degrading the electrical conductiv-
ity. The properties that result from SHT and aging as well as
RSP and aging are compared in Table 1.

The aging of Cu-Cr-Sn-Zn alloy by trial and error is both
costly and time-consuming. For this reason, developing a reli-
able modeling approach to control and predict the properties of

the Cu-Cr-Sn-Zn alloy seems to be both useful and efficient.
To this end, an artificial neural network (ANN) approach has
been used due to its remarkable information-processing
characteristics, including nonlinearity, high parallelism, robust-
ness, fault and failure tolerance, learning capability, the ability
to handle imprecise and fuzzy information, and the capabil-
ity of generalizing information (Ref 10-14). However, applying
an ANN to the investigation of the properties of the
Cu-Cr-Sn-Zn alloy is a new and unique application of the
technique, so the goal of this article was to apply the ANN to
the analysis and prediction of the properties for RSP of the
Cu-Cr-Sn-Zn alloy.

2. Experimental Procedure

Ingots of the Cu-Cr-Sn-Zn alloy were induction-melted in a
quartz tube and then were “jetted” under pressure using an Ar
gas stream onto a rotating Cu roll rotating at a speed of
about 2300 rpm. The diameter of the roll was 250 mm. The
resulting ribbons were 2 mm wide by 40 to 70 �m thick. Aging
treatments were performed on the ribbons in an electric
resistance tube furnace in an Ar atmosphere. The temperature
accuracy was maintained at ±5 °C. The electrical resistivity
of the Cu-Cr-Sn-Zn alloy samples was determined by
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Table 1 Properties of solution aged and
rapid-solidification processed and aged

Temperature,
°C Time, h

Hardness, HV
Conductivity,

% IACS

SA RS SA RSA

400 3 108 156 57.8 56.9
450 2 112 141 66.6 63.1
500 0.25 102 178 51.4 60.6
550 0.5 118 165 55.4 63.5

Note: SA, solution-aged; RSA, rapid solidification—processed and aged
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measuring the resistance of a 60 mm length of ribbon using a
ZY9987-type ohmmeter. Microhardness was measured on an
HVS-1000 hardness tester (Shandong Laizhou Testing Appa-
ratus, Ltd., Laizhou City, China) using a 25g load with a dwell
time of 5 s. Every sample was tested five times with an accu-
racy of ±5%.

To ensure a reasonable data distribution with enough infor-
mation for the ANN model, an RSP test matrix was established
to include the following parameters: aging temperatures of 400,
430, 450, 470, 500, 530, 550, 580, and 600 °C for aging times
of 0, 5, 15, 30, 60, 90, 120, 150, and 180 min, respectively. In
the ANN model, the input parameters were defined as aging
temperature (T ) and aging time (t). The output variables, thus,
became hardness (H ) and electrical conductivity (C).

3. Artificial Neural Network Modeling of the
Rapid Solidification Aging Process

Backpropagation, which is one of the most famous training
algorithms for multilayer models, is a gradient descent tech-
nique that is used to minimize the error in a particular training
pattern. The weights of the neurons are iteratively adjusted in
accordance with the specified error correction rule until the
output for a specific network is close to the desired output.

To ensure stabilization of the algorithm, the values of the
input matrix (X ) are regularized in the range of 0.1 to 0.9 as
follows:

X = 0.1 +
0.8�X − min�X��

max�X� − min�X�
(Eq 1)

The hidden layers can extract characteristic knowledge im-
plied in input data. So, it is the hidden layers that give the AAN
the ability to deal robustly with nonlinear and complex prob-
lems. A tradeoff exists between generalized performance and
the complex training procedure when designing the topology of
an ANN.

In this example, there are many instances in which the two
hidden-layer ANN are suitable. If the dimension of input layers
are N (and not too great), N1 and N2 are the quantities of the
nodes in the first and second hidden layer, respectively. At this
point, N1 � N, and N2 can be adjusted to ensure that both the
generalized performance and the rate of the convergence are
suitable. If the sum of the squared error is established as 0.09,
a perfect topology ({2,2,8,2}) of the H and C outputs can be
obtained after many trial-and-error computations in the ANN

program. The transfer function in the ANN model is log-
sigmoid:

f =
1

1 + e−x

4. Results and Discussion

The relations between the predicted values from the trained
ANN and the measured data from the experiment are shown in
Table 2. The degree of error of the prediction was 4.5 and
4.7%, respectively, for H and C. Good agreement between the
predicted values from the trained ANN and the validation data
is achieved, indicating that the trained ANN achieves optimal
generalized performance.

After the ANN is trained successfully, all domain knowl-
edge extracted from the existing samples is stored in digital
form with appropriate weights for each connection between the
neurons. Making full use of the domain knowledge stored in
the trained ANN, three-dimensional graphs can be drawn
(Fig. 1, 3).

Figure 1 shows the way in which C increases with increas-
ing heat treatment time and temperature. After reaching
500 °C, the value of C decreases slightly. At approximately
450 °C (i.e., the initial stage of aging), the conductivity sharply
increases and then tends to stabilize. Upon initial aging, the
RSP Cu-Cr-Sn-Zn alloy undergoes precipitation due to its ex-
tended supersaturation limit and numerous crystal defects. It is
the precipitation of particles from the supersaturated solid so-
lution that results in the initial sharp increase of conductivity.
For the RSP Cu-Cr-Sn-Zn alloy, precipitation proceeds through
the diffusion of solute atoms with the aid of vacancies. The
vacancies exist in the RSP Cu-Cr-Sn-Zn alloy at higher con-
centrations and diffuse rapidly during the initial stage of aging.
Their consumption can be expressed by the following equation
(Ref 15):

N = N0e
−nat

where N is the total number of vacancies, n is the number of
vacancy sites, which is constant during heat treatment, a is a
constant related to T, and N0 is the number of vacancies in the
supersaturated solid solution. It should be noted that the decay
of vacancies is directly related to the change in electrical re-
sistivity of the alloy at each aging temperature. Thus, as the
aging time increases, the fewer the number of vacancies that
are present in the alloy. Thus, over time, the precipitation pro-
cess will slow down. This is consistent with the change in C in
the Cu-Cr-Sn-Zn alloy that has gone through RSP and aging, as

Table 2 Measured data and predicted values

Variables

Temperature, °C (time, h)

400 (2.5) 430 (0.5) 450 (3) 480 (0.25) 500 (0.25) 530 (1.5) 550 (2) 580 (1)

Hardness
Predicted values, HV 142.3 134.1 147.6 157.5 170.0 124.5 111.7 109.0
Tested data, HV 146.1 131.2 144.1 165.0 178.0 128.9 112.0 110.0
Error, % 2.6 2.2 2.4 4.5 4.5 2.5 0.2 0.9

Conductivity
Predicted values, % IACS 51.5 52.5 61.2 62.8 63.9 65.7 65.2 64.5
Tested data, % IACS 53.2 51.3 64.2 60.4 61.7 65.6 65.6 63.3
Error, % 3.2 2.5 4.7 4 3.6 0.2 0.6 2.9
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shown in Fig. 2. The conductivity can reach 64% international
annealed copper standard (IACS) at 500 °C after 15 min. The
maximum conductivity for the RSP and aged Cu-Cr-Sn-Zn
alloy is 67% IACS at 500 °C after 3 h.

Figure 1 is the C surface as a function of aging temperature
(T ) and aging time (t). Figure 2 is the section through this
surface showing how C changes with time at 500 °C.

Figure 3 shows the H surface as a function of T and t.
During the initial stages of aging, the vacancies speed up the
precipitation process and increase the number of nucleation
sites for the precipitates. As a result, the dispersion-hardening
effect is greatly intensified. At 500 °C, the peak H of 170 HV
is achieved after 15 min.

By means of RSP, a significant increase in the solid solu-
bility range of Cr in Cu is achieved. The RSP also refines the
microstructure. Upon aging, the supersaturated solid solution
precipitates as a very fine dispersion of second-phase particles
in the matrix or at the grain boundaries. These fine precipitates,
together with the Cu matrix, give rise to the alloy peak H. The
H increases with decreasing grain size, following the Hall-
Petch relationship.

High H (i.e., 126 HV) still exists at 600 °C after 15 min (as
shown in Fig. 4). The thermal stability of the alloy is due to the
presence of stable Cr dispersoids distributed throughout the Cu
matrix. They have a high melting point and little solubility in
the Cu. These dispersoids provide resistance to the motion of
the dislocation at elevated temperatures, making a significant
contribution to the overall strength of the alloy. This result is
consistent with the good elevated temperature properties of the
alloy, as shown in Fig. 4.

5. Conclusions

Based on this work, the H and C of the RSP and aged
Cu-Cr-Sn-Zn alloy was determined using ANN modeling.
From this work, the following conclusions can be drawn:

• RSP and aging can greatly enhance the H and C of a
Cu-0.36Cr-0.23Sn-0.15Zn alloy, especially in the early
stages of the aging treatment.

Fig. 1 The surface of C as a function of T and time t

Fig. 2 The C as a function of time at T � 500 °C

Fig. 3 The surface of H as a function of T and t

Fig. 4 The H as a function of T at t � 15 min
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• The ANN is a useful approach in the property analysis and
prediction of H and C of a Cu-0.36Cr-0.23Sn-0.15Zn al-
loy, even when using a limited number of measurements.
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